Practice Material for Periodic Test-I

	MATHEMATICS WORKSHEET			
	CLASS IX			
1.	Express 0.3535in $\frac{p}{q}$ form			
2.	Find two irrational numbers between 0.5 and 0.55			
3.	Locate $\sqrt{3}$ on the number line.			
4.	Find a and b if $\frac{\sqrt{3}-1}{\sqrt{3}+1} = \mathbf{a}+\mathbf{b}\sqrt{3}$			
5.	If x= 2+ $\sqrt{3}$, find the value of $x^3 + \frac{1}{x^3}$			
6.	Simplify $(0.001)^{\frac{1}{3}}$			
7.	Evaluate using identities: 103×107			
8.	Find the remainder x^4 -3 x^2 +2x+1 is divided by x-1			
9.	Show that x-3 is a factor of the polynomial x^3 - 3 x^2 + 4 x - 12			
10.	Using factor theorem, $x^3 + 6x^2 + 11x + 6$			
11	If $f(x) = 2x^3 - 13x^2 + 17x + 12$, find $f(-3)$			
12.	Find the zero of the polynomial 2x+5			
13.	If x= 2 is a zero of the polynomial $2x^2$ -3x+7a, find a.			
14.	If both x+1 and x-1 are factors of ax^3+x^2-2x+b			
15.	Factorise: $64a^3 + 125b^3 + 240a^2b + 300ab^2$			
16.	Find the value of $27x^3+8y^3$ if $3x+2y=14$ and $xy=8$			
17.	An exterior angle of a triangle is 110° and one of the interior opposite angles is 30° . Find the other			
	two angles of the triangle			
18.	If the supplement of an angle is three times its complement, find the angle.			
19.	If two interior angles on the same side of the transversal intersecting two parallel lines are in the			
	ratio 2:3 , then find the measure of larger angle			
20.	In $\triangle ABC$ the internal bisectors of $\angle B$ and $\angle C$ meet at P and the external bisectors of $\angle B$ and $\angle C$ meet			
	at Q.Prove that ∠BPC+∠BQC=180			
21.	Prove that $(9)^{\frac{3}{2}} \cdot 3 \times 5^{0} \cdot (\frac{1}{81})^{\frac{-1}{2}} = 15$			
22.	In a $\triangle ABC$, $\angle ABC = \angle ACB$ and the bisectors of $\angle ABC$ and $\angle ACB$ intersect at O such that $\angle BOC = 120^{\circ}$.			
	Show that ∠A=∠B=∠C=60°.			
23.	The side BC of a ΔABC is produced on both sides. Show that the sum of the exterior angles so			
	formed is greater than $\angle A$ by two right angles.			
24.	The opposite sides of a quadrilateral are parallel. If one angle of the quadrilateral is 60°, find the			
	other angles.			

25.	Simplify:	$\frac{(25)^{\frac{3}{2}} \times (243)^{\frac{3}{5}}}{(16)^{\frac{5}{4}} \times (8)^{\frac{3}{3}}}$	
26.	All theorems		